美团技术团队
最新文章
文章存档
技术沙龙
关于我们
© 2026 美团技术团队
All Rights Reserved.
文章列表
Tag: # 算法
KDD 2024 | 美团技术团队精选论文解读
2024年07月26日
美团技术团队
本文精选了美团技术团队被 KDD 2024 收录的 5 篇长文进行解读,覆盖了用户意图感知、机器学习&运筹优化、在线控制实验、联合广告模型、实时调度决策等多个技术领域。这些论文都是美团与高校、科研机构合作的成果。希望能给从事相关研究工作的同学带来一些帮助或启发。
阅读全文
CVPR 2024 | 美团技术团队精选论文解读
2024年06月13日
美团视觉智能部
本文精选了美团技术团队被CVPR 2024收录的7篇论文进行解读,这些论文既包括OCR预训练、长尾半监督学习等基础学习范式升级,也包括图生视频、数字人驱动、视听分割(AVS)等视觉AIGC技术创新。这些论文有美团视觉智能部的独立产出,也有跟高校、科研机构合作的成果。希望能给从事相关研究工作的同学带来一些帮助或启发。
阅读全文
基于多模态信息抽取的菜品知识图谱构建
2024年05月17日
JL
菜品作为到店餐饮各相关业务的基石,提供了更细粒度的视角理解餐饮供给,为到餐精细化运营提供了抓手。美团到店研发平台/数据智能平台部与天津大学刘安安教授团队展开了“基于多模态信息抽取的菜品知识图谱构建”的科研合作,利用多模态检索实现图文食材的识别,扩展了多模态菜品食材识别的范围,提升了食材识别的准确性。
阅读全文
美团外卖基于GPU的向量检索系统实践
2024年04月11日
到家研发平台&基础研发平台
到家搜索业务具有数据量大、过滤比高等特点,为了在保证高召回率的同时进一步提高检索性能,美团到家搜索技术团队与基础研发机器学习平台团队基于GPU实现了支持向量+标量混合检索的通用检索系统,召回率与检索性能均有较大提升。本文将介绍我们在GPU向量检索系统建设中遇到的挑战及解决思路,希望对大家有所帮助或启发。
阅读全文
如何利用「深度上下文兴趣网络」提升点击率?
2023年11月09日
旭阳 浩然 刘奇 景文 王哲
美团到店广告平台在用户行为序列建模算法的迭代落地中,基于对业务实际场景中用户决策心智的观察,创新性地提出了深度上下文兴趣网络,精确建模了用户的兴趣,提升了CTR等线上业务指标。本文介绍了相应算法背后的动机、建模方法以及工程优化,希望能为从事相关工作的同学带来一些启发或帮助。
阅读全文
美团多场景建模的探索与实践
2023年09月14日
王驰 森杰 树立 文帅 尹华 肖雄
本文介绍了美团到家/站外投放团队在多场景建模技术方向上的探索与实践。基于外部投放的业务背景,本文提出了一种自适应的场景知识迁移和场景聚合技术,解决了在投放中面临外部海量流量带来的场景数量丰富、场景间差异大的问题,取得了明显的效果提升。希望能给大家带来一些启发或帮助。
阅读全文
KDD 2023 | 美团技术团队精选论文解读
2023年08月11日
美团科研合作
本文精选了美团技术团队被KDD 2023收录的7篇论文进行解读,论文覆盖了Feed流推荐、多模态数据、实例分割、用户意图预测等多个方向。这些论文也是美团技术团队与国内多所高校、科研机构合作的成果。希望给从事相关研究工作的同学带来一些启发或者帮助。
阅读全文
斩获CVPR 2023竞赛2项冠军|美团街景理解中视觉分割技术的探索与应用
2023年07月27日
金明 旺旺等
视觉分割技术在街景理解中具有重要地位,同时也面临诸多挑战。美团街景理解团队经过长期探索,构建了一套兼顾精度与效率的分割技术体系,在应用中取得了显著效果。同时,相关技术斩获了CVPR 2023竞赛2项冠军1项季军。本文将详细介绍街景理解中分割技术的探索与应用,希望能给从事相关研究工作的同学带来一些帮助或启发。
阅读全文
CVPR 2023 | 美团技术团队精选论文解读
2023年06月16日
美团技术团队
本文精选了美团技术团队被CVPR 2023收录的8篇论文进行解读。这些论文既有自监督学习、领域自适应、联邦学习等通用学习范式方面的技术迭代,也涉及目标检测、跟踪、分割、Low-level Vision等典型视觉任务的性能,体现了美团在基础通用技术和垂直领域技术上的全方位创新。这些论文也是美团技术团队与国内多所高校、科研机构合作的成果。希望给从事相关研究工作的同学带来一些启发或者帮助。
阅读全文
低延迟流式语音识别技术在人机语音交互场景中的实践
2023年04月13日
正坤 鸿雨 李敏 飞飞 丁科 广鲁
美团语音交互部针对交互场景下的低延迟语音识别需求,提出了一种全新的低出字延迟流式语音识别方案。本方法将降低延迟问题转换成一个知识蒸馏过程,极大地简化了延迟优化的难度,仅通过一个正则项损失函数就使得模型在训练过程中自动降低出字延迟。在实验测试集上,本方法能够获得最高近 200 毫秒左右的平均出字延迟降低。
阅读全文
ICDE 2023 | 多场景多任务学习在美团到店餐饮推荐的实践
2023年03月23日
周杰 先帅 文豪 薄琳 张琨
美团到店餐饮算法团队在跨域迁移学习的长期实践中,基于多场景的业务背景,提出了分层信息抽取网络,提升了多场景多任务的建模效果。相关技术方案形成的学术论文已经被国际数据工程会议ICDE 2023收录,本文详细阐述了多场景&多任务学习的解决方案,希望能给从事相关方向研究的同学带来一些帮助或启发。
阅读全文
SOTA!目标检测开源框架YOLOv6 3.0版本来啦
2023年03月02日
楚怡 奕非 露露
近日,美团视觉智能部发布了 YOLOv6 3.0 版本,再一次将目标检测的综合性能推向新高。本次更新除了对 YOLOv6-N/S/M/L 模型进行全系列升级之外,还推出了大分辨率 P6 模型。其中,YOLOv6-L6 检测精度和速度超越 YOLOv7-E6E,取得当前实时目标检测榜单 SOTA。本文主要介绍了 YOLOv6 3.0 版本中引入的技术创新和优化,希望能为从事相关工作的同学带来一些启发或帮助。
阅读全文
大规模食品图像识别:T-PAMI 2023论文解读
2023年02月23日
致岭 丽萍 晓明
美团基础研发平台视觉智能部与中科院计算所展开科研课题合作,共同构建大规模数据集Food2K,并提出渐进式区域增强网络用于食品图像识别,相关研究成果已发表于T-PAMI 2023。本文主要介绍了数据集特点、方法设计、性能对比,以及基于该数据集的迁移实验等方面的内容,并对Food2K未来的工作进行了展望。希望能为从事相关工作的同学带来一些帮助或者启发。
阅读全文
美团视觉GPU推理服务部署架构优化实践
2023年02月09日
张旭 赵铮 岸青 林园 志良 楚怡等
面对在线推理服务使用的GPU资源不断增加、GPU利用率普遍较低的挑战,美团视觉研发团队决定通过模型结构拆分和微服务化进行优化,他们提出一种通用高效的部署架构,来解决这种常见的性能瓶颈问题。以“图像检测+分类”服务为例,优化后的服务压测性能指标GPU利用率由40%提升至100%,QPS也提升超过3倍。本文将会重点介绍推理服务部署架构优化的工程实践,希望对大家能有所帮助或启发。
阅读全文
大规模异构图召回在美团到店推荐广告的应用
2022年11月24日
齐裕、祥洲等
美团到店推荐广告团队在图神经网络的长期落地实践中,思考分析了场景的特点与挑战,针对性地进行了模型设计,并通过大规模训练工具及线上部署优化多次成功落地,带来了线上收入提升。本文主要介绍了大规模图召回技术在美团到店广告场景下的实践经验,包括模型设计思路、模型迭代历程、大规模训练工具以及线上部署性能优化等,希望为从事相关工作的读者带来一些启发。
阅读全文
美团SemEval2022结构化情感分析跨语言赛道冠军方法总结
2022年11月24日
陈聪 见耸 刘操 杨帆 广鲁 今雄
美团语音交互部针对跨语言结构化情感分析任务中缺少小语种的标注数据、传统方法优化成本高昂的问题,通过利用跨语言预训练语言模型、多任务和数据增强方法在不同语言间实现低成本的迁移,相关方法获得了SemEval 2022结构化情感分析跨语言赛道的冠军。
阅读全文
ACM MM & ECCV 2022 | 美团视觉8篇论文揭秘内容领域的智能科技
2022年11月17日
承健 子涵 俊杰等
前不久,美团视觉智能部的8篇论文被多媒体和计算机视觉领域顶会 ACM MM 与 ECCV 收录,本文将快速带你了解这8篇论文的研究成果及其可在内容领域的落地应用。
阅读全文
检索式对话系统在美团客服场景的探索与实践
2022年11月03日
子健 炎根
在传统的客服、IM等场景中,坐席需要花费大量时间回答用户的各种咨询,通常面临答案查询时间长、问题重复、时效要求高等挑战。因而,使用技术手段辅助坐席快速、准确、高效地回答用户的各类问题非常有必要。我们设计并迭代了一套基于检索式对话系统的框架,以推荐回复的方式,基于对话上文为坐席提供候选回复,提高坐席效率进而提升用户体验,在美团众多业务上均取得了显著的效果。
阅读全文
通用目标检测开源框架YOLOv6在美团的量化部署实战
2022年09月22日
庆源 李亮 奕铎 张勃 王新 祥祥
基于美团目标检测模型开源框架 YOLOv6,本文提供了一种通用的量化部署方案,在保持精度的同时大幅提升了检测的速度,为通用检测的工业化部署探索出一条可行之路,希望能给大家带来一些启发或者帮助。
阅读全文
目标检测开源框架YOLOv6全面升级,更快更准的2.0版本来啦
2022年09月15日
楚怡 红亮 梦婕等
近日,美团视觉智能部发布了YOLOv6 2.0版本,本次更新对轻量级网络进行了全面升级,量化版模型 YOLOv6-S 达到了 869 FPS,同时,还推出了综合性能优异的中大型网络(YOLOv6-M/L),丰富了 YOLOv6 网络系列。
阅读全文
««
«
1
2
3
4
5
6
»
»»