文章列表

美团搜索中查询改写技术的探索与实践

杨俭 宗宇 谢睿 武威
查询改写是对用户Query拓展改写词,用更好的表述,帮用户召回更多符合需求的结果。查询改写对于文本布尔检索系统是非常重要的扩召回手段,通过优化该算法模块能够直接且显著地提升搜索体验。本文主要讲述在美团的搜索场景下查询改写项目的迭代方向和实现思路,希望能对从事搜索、广告、推荐中召回相关工作的同学有所启发或者帮助。 阅读全文

美团搜索多业务商品排序探索与实践

曹越 瑶鹏 诗晓 李想等
首页搜索是美团 App 上十分重要的模块,每天服务于数千万用户。随着美团零售商品类业务的不断发展,美团搜索在商品类业务上的相关技术也在不断迭代,排序模块作为整个搜索系统的重要组成部分,极大地影响着用户最终的搜索体验。本文介绍了美团搜索在商品多业务排序上相关的探索以及实践,希望能对从事相关工作的同学有所帮助或者启发。 阅读全文

美团知识图谱问答技术实践与探索

如寐 梁迪 思睿 鸿志 明洋 武威
知识图谱问答(Knowledge-based Question Answering, KBQA)是指给定自然语言问题,通过对问题进行语义理解和解析,进而利用知识库进行查询、推理得出答案。美团在平台服务的售前、售中、售后全链路的多个场景中都存在大量的咨询问题。我们基于问答系统,以自动智能回复或推荐回复的方式,来帮助商家提升回答用户问题的效率,同时更快地解决用户问题。本文结合KBQA在美团场景中的具体实践,以及发表在EMNLP 2021上的论文,介绍了KBQA系统整体设计、难点突破以及端到端问答的探索,希望能对从事相关研究的同学有所帮助或者启发。 阅读全文

美团商品知识图谱的构建及应用

雪智 凤娇 姿雯 匡俊 林森 武威
商品知识图谱作为新零售行业数字化的基石,提供了围绕商品的精准结构化理解,对业务应用起到了至关重要的作用。相比于美团大脑中原有的围绕商户的图谱而言,商品图谱需应对更加分散、复杂、海量的数据和业务场景,且面临着信息来源质量低、数据维度多、依赖常识以及专业知识等挑战。本文将围绕零售商品知识图谱,介绍美团在商品层级建设、属性体系建设、图谱建设人效提升等方向的探索,希望对大家有所帮助或启发。 阅读全文

多业务建模在美团搜索排序中的实践

肖垚 培浩
美团搜索排序是一个典型的多业务混合排序建模问题,这种多业务场景搜索存在很多挑战,本文聚焦于到店商家多业务场景,进行了多业务排序建模优化工作。希望能对从事相关工作的同学有所启发或者帮助。 阅读全文

常识性概念图谱建设以及在美团场景中的应用

宗宇 俊杰 慧敏等
常识性概念图谱,是围绕常识性概念建立的实体以及实体之间的关系,同时侧重美团的场景构建的一类知识图谱。本文介绍了美团常识性概念图谱构建的Schema,图谱建设中遇到的挑战以及建设过程中的算法实践,最后介绍了一些目前常识性概念图谱在业务上的应用。 阅读全文

ACL 2021|美团提出基于对比学习的文本表示模型,效果相比BERT-flow提升8%

渊蒙 如寐 思睿
尽管基于BERT的模型在NLP诸多下游任务中取得了成功,直接从BERT导出的句向量表示往往被约束在一个很小的区域内,表现出很高的相似度,因而难以直接用于文本语义匹配。为解决BERT原生句子表示这种“坍缩”现象,美团NLP中心知识图谱团队提出了基于对比学习的句子表示迁移方法——ConSERT,通过在目标领域的无监督语料上Fine-tune,使模型生成的句子表示与下游任务的数据分布更加适配。在句子语义匹配(STS)任务的实验结果显示,同等设置下ConSERT相比此前的SOTA大幅提升了8%,并且在少样本场景下仍表现出较强的性能提升。 阅读全文

对话任务中的“语言-视觉”信息融合研究

会星 子彭 方向 小捷 玉树 仲远等
目标导向的视觉对话是“视觉-语言”交叉领域中一个较新的任务,要求机器能通过多轮对话完成视觉相关的特定目标。该任务兼具研究意义与应用价值。日前,北京邮电大学王小捷教授团队与美团AI平台NLP中心团队合作在目标导向的视觉对话任务上的研究论文被国际多媒体领域顶级会议ACMMM 2020录用。 阅读全文