文章列表

XGBoost缺失值引发的问题及其深度分析

李兆军
XGBoost模型作为机器学习中的一大“杀器”,被广泛应用于数据科学竞赛和工业领域,XGBoost官方也提供了可运行于各种平台和环境的对应代码,如适用于Spark分布式训练的XGBoost on Spark。然而,在XGBoost on Spark的官方实现中,却存在一个因XGBoost缺失值和Spark稀疏表示机制而带来的不稳定问题。 阅读全文

机器学习在美团配送系统的实践:用技术还原真实世界

何仁清
本文分享了美团配送在即时配送领域中机器学习技术的最新进展,其主题是如何通过大数据和机器学习手段,建立对线下真实世界的各种场景的感知能力,还原和预测配送过程各个细节,提升整体配送系统的整体精度。 阅读全文

即时配送的ETA问题之亿级样本特征构造实践

超逸
合理和准确的ETA预估也可以帮助线下运营构建有效可行的配送考核指标,保障骑手的体验和收益。 阅读全文