文章列表

7次KDD Cup&Kaggle冠军的经验分享:从多领域优化到AutoML框架

胡可
反馈快速,竞争激烈的算法比赛是算法从业者提升技术水平的重要方式,从若干行业核心问题抽象出的算法比赛具有很强的实际意义。本文结合笔者在7次Kaggle/KDD Cup中的冠军经验,对于多领域建模优化,AutoML技术框架,以及面对新问题如何分析建模三个方面进行了介绍。希望能够让读者收获比赛中的通用高效建模方法与问题理解思路。 阅读全文

KDD Cup 2020多模态召回比赛亚军方案与搜索业务应用

左凯 马潮 东帅 曹佐 金刚 张弓
本文介绍了KDD Cup2020多模态召回比赛亚军的技术方案以及在美团搜索业务中的应用与实践。 阅读全文

KDD Cup 2020多模态召回比赛季军方案与搜索业务应用

漆毅 坚强 胡可 雷军
本文介绍了KDD Cup2020多模态召回比赛季军的技术方案以及在美团搜索广告业务中的应用与实践。 阅读全文

KDD Cup 2020 AutoGraph比赛冠军技术方案及在美团的实践

坚强
ACM SIGKDD (国际数据挖掘与知识发现大会,简称 KDD)是数据挖掘领域的国际顶级会议。美团参加了KDD Cup比赛中Debiasing、AutoGraph、Multimodalities Recall等三道赛题,最终在Debiasing赛道中获得冠军(1/1895),在AutoGraph赛道中也获得了冠军(1/149),并在Multimodalities Recall赛道中获得了季军(3/1433)。 阅读全文

KDD Cup 2020 Debiasing比赛冠军技术方案及在美团的实践

坚强
ACM SIGKDD (国际数据挖掘与知识发现大会,简称 KDD)是数据挖掘领域的国际顶级会议。美团参加了KDD Cup比赛中Debiasing、AutoGraph、Multimodalities Recall等三道赛题,最终在Debiasing赛道中获得冠军(1/1895),在AutoGraph赛道中也获得了冠军(1/149),并在Multimodalities Recall赛道中获得了季军(3/1433)。 阅读全文